Elliptic Curves and Cryptography

CHRIS ROHLICEK

May 2, 2018

Introduction

The National Institute of Standards and Technology (NIST) is an agency
of the U.S. Department of Commerce whose job today includes the estab-
lishment of standards for such practices as the encryption of government
information. After Edward Snowden leaked a number of classified docu-
ments from the NSA, the means by which that information was supposed to
be protected (as dictated by the NIST) came into question. The basis of this
data encryption was an algorithm using elliptic curves to generate pseudo-
random numbers in such a way that was practically irreversible given the
information that was made public. However, it was later discovered that
the NSA (who played a large part in the design and standardization of
this algorithm) made it possible for them to have access to the information
that made this encryption easily reversible. In order to fully understand
this story, we will describe the Diffie-Hellman Key Exchange (the encryp-
tion algorithm at the root of all the cryptography at play here), the role of
elliptic curves in such cryptographic algorithms, and finally the specific
mechanism by which the NSA gave themselves the ability to have access
to all the information that they helped protect.

Basics of the Diffie-Hellman Key Exchange

One of the most famous advancements in the field of cryptography was
made in the 1970s by Whitfield Diffie and Martin Hellman, with the de-
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velopment of an algorithm that was the first of its kind to allow for two
parties to establish a shared cryptographic key over a public channel of
communication. First conceptualized by Ralph Merkle, the Diffie-Hellman
algorithm was the first cryptographic tool that did not require two parties
to physically meet and establish a shared secret which was necessary for
secure communication.

To describe the Diffie-Hellman Key Exchange, we will go through the
protocol using elements of a generic group as the vehicle through which
the shared secret is established [1]:

Consider two people (called Person A and Person B) who are participat-
ing in this exchange. Person A and B both have access to a set of public
information, which includes a cyclic group E, that group’s order n, and
an element Q € E which generates E. Person A first chooses a random
number, e, which they keep secret, but they make public the result they
get from multiplying their secret number with the public generator. So
now the public information also includes P = e * Q. Similarly, Person B
comes up with a secret number, r, and releases the public result 7 x Q. Once
these preliminary steps are completed, the public pool of information now
includes E, n, Q, P, and r % Q.

By the commutativity of integers we know the following relation to hold
on a subset of the public information:

ex(r«Q)=rx(exQ)=rxP

In this relation lies the innovation of the Diffie-Hellman Key Exchange.
Because Person A knows their own private number ¢, as well as the public
r * Q, they can multiply those together to calculate r x P. Similarly for
Person B, they can multiply their private r and the public e * Q = P to get
r* P. Thus r * P is the shared secret between Person A and B.

In this example, r x P is supposed to be a secure secret because we assume
that our group E is such that given the information E, n, Q,P = e * Q,r x Q,
the calculation required to find r x P is intractable. More recently, this



method has been made even more secure by the introduction of elliptic
curves as the tool for encryption.

Overview of Elliptic Curves

To understand one of the major tools used in the encryption technology
we are discussing, we must first make clear the idea and implications of
elliptic curves. We define an elliptic curve over a field F as the set of points
satisfying the relation

v =x+ax+b

As we used in our above illustration of the Diffie-Hellman Key Exchange,
we can use the elliptic curve to create a group from which we can take
elements to facilitate the establishment of a secret key.

The Group Structure on an Elliptic Curve

Consider the set of all points on an elliptic curve, E. To give this set a group
structure we define the operation of addition. The geometric intuition
behind addition on an elliptic curve is illustrated below[2]:
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Figure 1: Elliptic Curve over the
Real Numbers. Figure 2: Addition.

Addition

For any two points P, Q € E, we define addition on these points such that
P+ Q = —R. To picture this geometrically, consider the line defined by
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going through points P and Q. —R is the third point of contact made with
this line and the elliptic curve. To use this point to get our result R, we
define R to be the point opposite to —R. In other words, for —R = (x,y),
R = (x, —y). We know an opposite point will exist for every element of E
because an elliptic curve will always be symmetric over the x-axis.

Associativity follows a purely geometric argument through which addition
is shown to be associative for any three arbitrary points P, Q, R [3]. Through
the addition algorithm described above, one sees that it must hold that
(P+Q)+R=P+(Q+R).

Closure

We know that E is closed under addition because for points P = (x1,¥1)
and Q = (x2,y2) we can express the coordinates of R = (x3,y3) in the
following closed form[2]:
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In addition to this, we need to consider the special case in which the points
are equal: P = Q = (x1,y1). This gives a similar closed form solution for

R = (XZ,yz)Z

Geometrically, when the two points are equal one can imagine finding the
third point by looking for the intersection that the tangent line at P has
with the curve.

Existence of Inverses and Identity

As we briefly mentioned before, all elements P have an inverse element
(equivalent to what we previously referred to as the "opposite") P’ such
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that P + P’ = 0. The existence of these inverses follows from the symmetry
of the elliptic curve.

The set of elements in E includes all points along the elliptic curve, as
well as an extra point id = (o0, 0). As you can tell from the notation, this
serves as the identity element:

VPeE, P+id=P

Point Multiplication

From our definition of addition over our group E, we can extrapolate a

notion of scalar multiplication of points. For example, for an integer 7,

we say that nP = P + ... + P. This is an important feature of our group to
N——

nterms
consider, because it gives us the ability to form subgroups of E.

Consider the cyclic group generated by a point, P. The cyclic group, (P), is
then closed under our operation (addition):

nP+mP=|P+.+P|+|P+..4P|=|P+..+P| =(n+m)P
e N’ e
n terms m terms nm terms

The idea of point multiplication has a very interesting quality in that it is
very hard to reverse. As you recall from earlier, addition is defined on our
group E in a way that is almost purely geometric, and depends entirely on
the shape of a given elliptic curve. For this reason, given points Q and P
such that Q = nP, there is no simple way to calculate 7.

To be more specific about this, consider a subgroup (P) C E generated
by a point P. Imagine that you were trying to find the order of (P). By
Lagrange’s theorem we know that the order of (P) must divide the order
of E, so if we are given |E| it may seem appealing to fin |(P)| by simply
checking all divisors of E until you find the smallest integer n such that
nP = 0. However, for arbitrarily large E, this can become very difficult.
This introduces to us the idea of the discrete logarithm problem.



The Discrete Logarithm Problem

Consider our group E of the points defined by an elliptic curve. For points
P,Q € E, the discrete logaritm of Q in base P is defined by k such that
Q = kP. The goal of this problem is to find the smallest such k.

Application to Diffie-Hellman

As we noticed in our summary of the Diffie-Hellman Key Exchange, the
security of the algorithm relies on the intractability of solving for either
party’s secret key given only the public information of a secret key’s prod-
uct with something else. Before we explain the role of elliptic curves in
this encryption algorithm, we will once more restate the Diffie-Hellman
protocol, but this time in the context of finite cyclic groups (recall that these
are the structures of the subgroups on our finite elliptic curves) [4].

e Person A and Person B begin with the shared information G (a finite
cyclic group), and g (a generating element).

e Person A picks a number a which becomes their kept secret, and
publicly gives the result g* to Person B.

e Person B picks a number b which becomes their kept secret, and
publicly gives the result ¢” to Person A.

e With the public information along with their respective private keys,
Person A calculates (g”)* and Person B calculates (g%)?. (g%)* =

(g")? = ¢ is then the shared secret which is deemed as such be-

cause it is assumed to be intractable to calculate ¢** from the public

information g, g%, g%.

The protocol of this algorithm changes very little when we make elliptic
curves the medium for the exchange. Similar to the case above, we begin
with a finite cyclic group, which is generated by some point P belonging
to the group of points on some elliptic curve over a finite field. With the
generator P public, Person A and B then use their secret numbers 14 and
np respectively to obtain the results Q4 = n4 * P and Qp = np * P which
they then publicly send to the other person (this part of the exchange is
totally analogous to the non-elliptic curve case, except here we use the
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point multiplication defined by our addition operator). Finally, Person A
and B use their secret keys to reach the shared secret of

na*xQp=nang*xP =ngnsg*P =ng*xQu

With a result that looks almost identical to the result that came before the
use of elliptic curves, the benefit of this application is not immediately
obvious (either result is impractical to reverse, in what way was this an
improvement?). Experimentally however, elliptic curve cryptography us-
ing 256-bit keys is seen to be equivalent in security to RSA encryption
(a method very similar in protocol to Diffie-Hellman but used for some
slightly different applications) using 3072-bit keys [5]. The benefit of elliptic
curves to this method of encryption is the fact that is presents a vastly more
difficult distinct logarithm problem, and is thus vastly more secure.

Application to Random Number Generators

Now that we understand the basics of elliptic curves and their role in
cryptography, we will consider a similar application to the technology of
pseudo-random number generators. For this technology, the NIST dictates
that the following data is public: E and elliptic curve over a finite field
(call it IF,), p the order of that field, n the order of the group E, f a cubic
polynomial in IF, [x], and points P, Q € E [1].

By the nature of points on elliptic curves, we can extract from any non-
identity point in E its x-coordinate in the finite field (we will define this
extraction with a map ¢):

¢: (E—{0}) =T,

Even further, because our field is finite of order p, we know there to exist
some injection ¢ from F,, into the integers:

¢:]Fp—>Z

With the composition of these maps, we know there to exist a map by which
we can get integers from points on our elliptic curve. This is the main mech-
anism through which our random numbers are going to be generated.
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The method of obtaining random numbers form our set of information
(E,p,n, f,P, Q) loosely takes the form of the following algorithm[1]:
e Begin with the integer seed, s, which is kept hidden

e Apply s to the known point P € E, and then map the result to an
integer using our composition of functions from earlier: (¢ o ¢)(s * P).
The use this result to define the integer r.

e Apply r to P and store the result in the integer s": s’ = (o ¢) (v * P)

e Use r and the known point Q to define a separate integer,
b= (pog)(r+Q)

e We then convert t to a string of bits and discard the 16 most significant
digits to arrive at our random number, b.

(In the next iteration of this process, s’ will be used as the seed).

The Back Door to the Algorithm

As is the case with Diffie-Hellman algorithm, the security of this random
number generation comes in the intractable discrete logarithm problem it
presents (made especially difficult thanks to the use of elliptic curves). In
this case, that problem is solving for a number e such that P = ¢ x Q. We
know that such an e exists because, since P and Q are both elements of the
prime cyclic group E, one must be a multiple of the other.

Ultimately, this random number generating algorithm looses its security
once it becomes predictable. To predict the output, one needs to know s/,
as that is the number that begins the algorithm in the next iteration. One
could calculate s’ if they knew the product r * P, because s’ = (o ¢)(r * P).
As we defined the relation between points P and Q, we know the following
equality to hold:

r«P=rx(exQ)=ex(rxQ)

From the random number b output by the algorithm, there are then 26
possible t (two possibilities for each of the 16 removed bits from the original
t). This is ultimately not a very large number, so it is by no means an
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intractable task to check every possibility. For any integer ¢, there are
two possible points on the curve, A and —A, for which ¢t represents the
x—coordinate. Because f is defined by our algorithm as t = (o ¢)(r x Q),
the proper t is identified when it represents the x—coordinate of a point
A such that e x A = r x P. However, because r is kept unknown, this
overarching relation serves as a way to reduce the range of possible values
of s’, from which the correct one can be found after a relatively small
amount of examination of the output of the algorithm.

Conclusion

To understand the cryptography at play in this story, there is only a small set
of fundamental ideas with which one must acquaint themselves. We began
with the Diffie-Hellman Key Exchange algorithm which was a tremen-
dously innovative addition to the field of cryptography, as it was the first
method by which two people could establish a shared secret through only
public communication. The reason this was such a groudbreaking algo-
rithm was that the calculations it used to establish this shared secret were
practically irreversible. More recently this algorithm was made even more
secure by the use of elliptic curves as a basis for the necessary calculations.

With this background made clear we looked at the process by which a
good deal of government information is encrypted. However, the NSA, as
some of the main architects of this process, gave themselves access to a key
piece of information which allowed them to easily undo the encryption
algorithm, thus giving themselves access to all of the information which
was supposed to be unreachable.
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