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1 Introduction

When a Supreme court nominee is confirmed, they are
justices for life, and their future votes will affect count-
less major decisions on cases. They will decide, often
by a one vote margin, the fate of abortion rights across
the country, the meaning of equal protection, and occa-
sionally, the next president of these United States. These
votes hold great of power in shaping the United States,
and ramifications echo long after the justice has left the
bench.

Because of this, Supreme Court confirmation battles
have become a unique touchstone in American politics.
Before a Supreme Court justice even formally announces
their retirement, the president will begin researching re-
placements. Dozens of White House staffers comb
through millions of pages of writings, cases, and docu-
ments on potential nominees, hoping to determine how
they will vote in important cases. The nomination hear-
ings themselves have come to reflect the paramount im-
portance of a seat on the Supreme Court. This was kicked
into high gear in Ted Kennedy’s famous ”Robert Bork’s
America” speech, where he argued that if Bork were con-
firmed:

...women would be forced into back-alley abor-
tions, blacks would sit at segregated lunch
counters, rogue police could break down cit-
izens’ doors in midnight raids, school chil-
dren could not be taught about evolution, writ-
ers and artists could be censored at the whim
of the government, and the doors of the fed-
eral courts would be shut on the fingers of
millions of citizens for whom the judiciary is-
and is often the only-protector of the individ-
ual rights that are the heart of our democracy
[3].

In modern confirmation hearings, each side will at-
tempt to present dueling visions of a nominees jurispru-
dence. Modern nominees are chosen with this in mind,
and often have little written record that Senators can at-
tack. Indeed, much of the goal of confirmation hearings
is to say as little as possible – the act of declining to an-
swer a question is known as the ”Ginsburg Rule”, after
notorious Supreme Court Justice Ruth Bader Ginsburg
[2]. It is an open question how much, if any, information
do we gain from Supreme Court confirmation hearings.

As such, an important question is: How well can we
predict the voting patterns of Supreme Court nominees at the
time of nomination?

We hope to answer this question by drawing from
different data sets and training Logistic Regression and
Random Forest classifiers to predict how future justices
will vote on particular cases.

2 Background and Related Work

There has been past on work on predicting Supreme Court
outcomes, however, most of these models focus on pre-
dicting the outcomes of specific cases. The data used in
these models are most commonly the text data from the
oral arguments of the case or the voting records of the
justices ruling on the case. One of the more common ap-
proaches across these models is to use random forests, as
discussed in the model described by Kaufman et al. [5].

Using these approaches as inspiration, we decided to
broaden the scope of our model from predicting individ-
ual case outcomes, to predicting how nominees to the
Supreme Court would vote generally if confirmed. This
is a question of great relevance because Supreme Court
nominations are important decisions on which data is
kept intentionally sparse. With this as our motivation,
we set out to build a model that can give an accurate pre-
diction of how a nominee would vote if confirmed, given
only the data available at the time of their confirmation.

We hope to integrate the nominees’ confirmation hear-
ing texts in some way. Kraft et al. explored a related
problem of predicting legislative roll-call votes from bill
texts [6]. They used an embedding-based approach and
represented a bill text as the average of the pre-trained
word embeddings within that text, something we will
do as well.

3 Approach

3.1 Dataset Generation

We looked at three sources of data: demographic data on
all past nominees, case data, and text transcripts from all
nominees’ confirmation hearings (if they had one). Be-
cause of the quality of transcriptions available we were
limited to using the data from the most recent 16 justices’
confirmation hearings (each roughly 40,000 words long).

3.1.1 Demographic Data

Data. The nominee information came from a dataset
from WashU, which contains demographic and career
information, as well as political science measures of their
political/legal valence [8].

Preprocessing. We first eliminated unnecessary or
overly specific features such as Name of Nominees Mother.
Additionally, we used one hot encoding to turn cate-
gorical features like State in which Nominee Served as an
Assistant District or County Attorney into a representa-
tive set of dummy variables. Lastly we transformed fea-
tures based on years to be irrespective of the specific
year of a given judge’s nomination. For example, we re-
placed the features First Year Nominee Served in the Con-
tinental Congress and Last Year Nominee Served in the Con-
tinental Congress with Years Nominee Served in the Conti-
nental Congress. After the preprocessing stage, our de-
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mographic dataset consisted of 704 constructed features
(142 before one hot encoding).

3.1.2 Confirmation Text Hearings

Data. Before the Senate votes whether to confirm a nom-
inee to the Supreme Court, they hold public confirma-
tion hearings. Nominees read their prepared statement
before the Senate, and then the Senators ask questions to
the nominee pertaining to their judicial philosophy and
qualifications. PDF transcripts of the hearings were ob-
tained from the Senate Judiciary committee [4]. These
contain all transcripts from Kavanaugh (2018) through
Powell (1971). Additional transcripts are available, but
these are in an older format that made Optimal Charac-
ter Recognition impractical.

Preprocessing. To generate utterances from these
PDFs, we transcribed them via the program pdftotext,
and then parsed them into individual statements with
regular expressions. We confirmed by hand that the tran-
scriptions and parsing was roughly accurate, though there
were a few transcription errors.

3.1.3 Case Data

Data. Data about court cases and voting patterns came
from the Supreme Court Database (SCDB), a third party
dataset that contains over 200 years of expertly-coded
features for individual cases.

3.2 Feature Set Extraction

We then created multiple feature sets, to determine what
kind of features were most informative for our models.
Afterwards, we performed feature selection to narrow
down the number of features due to computational costs.

3.2.1 Demographic

This feature set includes just the demographic + case data.
This data is useful because each justice’s past experiences
and attributes may play a role in how they vote.

3.2.2 Demographic + N-grams

We decided to look at N-grams to see if the frequency of
words in the confirmation hearings provided any infor-
mation on how they might vote. To produce N-grams
(sequences of N words), we looked at each text and
cleaned it by removing stop words, converting to lower-
case, and more. Then we vectorized the N-gram counts,
limiting our feature set to the 5000 most frequent N-grams.

Demographic + 1-grams. This feature set merged
the demographic + case data along with the vectorized
counts of words within each confirmation hearing text.

Demographic + (1,5)-grams. This feature set merged
the demographic data along with the vectorized counts
of N-grams, where N can be any value between 1 and 5,

within each confirmation hearing text. Some examples
of these (1,5)-grams were: ’ago think’, ’agree’, ’agree dis-
agree’, and ’agree senator’.

Demographic + (1,5)-grams + TF-IDF. We then ap-
plied a TF-IDF transform to the vectorized counts above.
This essentially weights the term frequencies by the in-
verse document frequency, meaning that words that are
more common across documents are weighted less be-
cause they may be less specific or informative. This often
improves on the standard N-gram approach. The trans-
form is defined as

t f id fi,j = t fi,j ∗ log
[(

1 + N
1 + d fi

)
+ 1

]
where t fij = number of occurrences of N-gram i in doc-
ument j, d fi = number of documents containing i, and
N total number of documents [7].

We then merged these N-gram vector counts (vector
length 5000) with the demographic + case data features.

3.2.3 Demographic + Mean Word Embeddings

Unlike N-grams, embeddings take into account the se-
mantic relationship between words, such that similar words
are closer in the vector space. Following Kraft et al.’s ap-
proach, we represented each confirmation hearing text
as the average embedding over all the words in that text
[6]. We used the embedding model pre-trained on the
Google News dataset of 3 million words and phrases [1].
We then merged these mean embeddings (vector length
300) with the demographic + case data features.

3.2.4 L1 Regularization Feature Selection

To find the most predictive features, we trained an SVM
with L1-regularization on our feature sets. The penalty
term in L1 regularization is λ ∑i |wi| for model weights
{wi}, while the penalty term in L2 regularization is λ

2 ∑i w2
i .

Through gradient descent, the weights will be changed
by a step-sized multiple of the gradient. Note that the
L1 loss provides a constant gradient while the L2 pro-
vides one that diminishes with wi. As a a result, L1
regularization allows the weights of features to diminish
to zero, while those in L2 regularization are minimized
but don’t reach zero. As a result, linear models with L1-
regularization have sparse solutions, meaning that many
of the model’s estimated coefficients are zero. We can
then reduce the dimensionality of the data by selecting
the features with non-zero coefficients [7].

After regularization with C = 1
λ = 1 (the inverse

regularization constant), we were left with around 500-
600 features in each feature set.

3.3 Algorithms and Implementation

To implement the models we chose, we used the scikit-
learn framework [7].
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3.3.1 Logistic Regression

Motivation. Logistic Regression has a number of advan-
tages like low variance, high interpretability (as outputs
are probabilities for classes), and compatibility with lin-
ear decision boundaries at the expense of high bias.

However, it is unlikely that the relationship is truly
linear – consider a trivial decision model for deciding the
outcome of a justice’s vote va on abortion cases, based
on party p of the nominating president and whether the
plaintiff is anti-abortion a. A reasonable model is

va = p⊕ a

That is, the justice votes in favor of the plaintiff if the
plaintiff is anti-abortion and the justice was appointed
by a republican, or if the plaintiff is pro-abortion and the
justice was appointed by a democrat. But as we know,
exclusive-or cannot be approximated by a linear func-
tion, and thus logistic regression could not simulate even
this trivial model correctly.

That being said, the interpretability and simplicity
benefits of logistic regression classifiers make it a good
starting point and baseline for comparison.

Algorithm. To apply logistic regression to our data,
we model the probability of a resulting vote as as sig-
moided noisy linear function of case and demographic
data, where σ(x) = ex

ex+1 is the sigmoid function:

P(Votei,j = 1) ∼ σ( f (casei, justicej) +N )

Because our problem is a two-class classification, we
follow the regression model which is a function of the
posterior distributions on the two classes, P(ωi|x) [9]:

ln
P(ω1|x)
P(ω2|x)

= θTx =⇒ P(ωi|x)(θ) =
eθT x

1 + eθT x
= σ(θTx)

Under this model, the goal is to minimize the negative
log-likelihood with an L2 penalty:

− log L(y|θ) = −
n

∑
i=1

(yiθ
Txi − log(1 + eθT xi )) + λ||θ||22

Hyperparameter Tuning. For tuning, we did a grid
search on C = 1

λ , the inverse of regularization strength
for an L2 penalty. Adding regularization is important to
prevent overfitting. In particular, logistic ridge regres-
sion tries to reduce the norm of θ and while also keeping
the NLL small [9]. It adds the λ||θ||22 term to our NLL.

Hyperparameter GridSearch Best

C [0.1, 1, 10, 100] 1

Table 1: The process of hyperparameter tuning on Logistic
Regression on the feature set with demographic data and 1-
grams.

3.3.2 Random Forest

Motivation. We then chose to explore random forest
classification for three primary reasons. First, it is an en-
semble method so it reduces variance by averaging. Ad-
ditionally, it is capable of capturing non-linear interac-
tions between features, unlike logistic regression. Lastly,
this was a common choice as a good classifier in related
work [5].

Algorithm. A random forest is an ensemble of deci-
sion trees made independently with bootstrapped sub-
samples of training data. Although the bias is slightly
larger than that of a decision tree (due to bootstrapping
sub-samples), ensemble methods reduce variance by av-
eraging, and this outweighs the bias disadvantage in prac-
tice [7].

Random forest decision trees are non-parametric mod-
els created by recursively partitioning the training data
present along the feature and value that leads to min-
imizing impurity. While we learned about entropy as
an impurity measure in class, we chose to use a popu-
lar alternative, called the Gini index, which results in a
slightly sharper maximum compared to the entropy one
[9]. The decrease in node impurity is:

I(t) =
M

∑
m=1

P(ωm|t)(1− P(ωm|t))

where I(tY) and I(tN) are the impurities associated with
the two new sets, respectively [9]. The feature and thresh-
old split maximizing the decrease in impurity, ∆I(t), gives
two new descendent nodes tY and tN . After trees stop
splitting, classes are assigned to each leaf node by the
majority vote of the data present there.

Hyperparameter Tuning. We tuned the tree-based
parameters shown in Table 2. Throughout tuning, we
used 100 trees for each classifier, which was near our
computational limit.

Hyperparameter GridSearch Best

MAX DEPTH [None, 10, 35, 60, 85, 110] 85
MAX FEATURES [log2, sqrt] log2
MIN SAMPLES SPLIT [2,5,10] 5
MIN SAMPLES LEAF [1,5,10] 1

Table 2: The process of hyperparameter tuning on Random-
ForestClassifier on the demographic only feature set.

4 Experiments

4.1 Testing

The labels were 1 if the justice voted for the plaintiff on
a case and 0 if they voted for the defendant. We used
5-fold cross validation on our training set to find train-
ing and validation scores. This prevents overfitting and
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checks how generalizable these models are to new data
for when we are evaluating models in hyperparameter
tuning.

We learned about leave-one-out cross-validation in
class and showed that it can approximate the expected
loss using just the training data (it is unbiased):

CV(λ) =
1
n

n

∑
i=1

(yi − θ̂MAP(D\i)Txi)
L

→n→∞ EyN [||yN − θ̂MAP(ξ)||22]

However, we decided to use k−fold cross validation in-
stead. We made this decision because our data set is
large so this reduces computation time and it also re-
duces the variance of performance on the test set because
training sets have less overlap. Given that we are limited
by computational resources, it makes sense to choose the
method with less variance and less computation time. If
we had more time, we would choose an even higher k to
reduce variance.

To calculate our final test scores, we trained the model
on the whole training set and scored its performance on
the test set (data we had not trained on before).

4.2 Results

4.2.1 Feature Set Selection

We created 5 feature sets: Demographic data only, De-
mographic + 1-grams, Demographic + (1,5)-grams, De-
mographic + (1,5)-grams + TF-IDF transform, and De-
mographic + Mean Embeddings. Then, we trained lo-
gistic regression and random forest classifiers on each of
our feature sets to determine which to use.

Accuracy Scores
Model Train Validate
LR (Demographic) 0.644 0.627
LR (Demographic + 1grams) 0.642 0.629
LR (Demographic + (1,5)-
grams)

0.641 0.628

LR (Demographic + (1,5)-
grams + TF-IDF)

0.643 0.624

LR (Demographic + Mean Em-
beddings)

0.644 0.623

RF(Demographic) 0.992 0.703
RF(Demographic + 1grams) 0.991 0.643
RF(Demographic + (1,5)-
grams)

0.991 0.643

RF(Demographic + (1,5)-grams
+ TF-IDF)

0.991 0.651

RF (Demographic + Mean Em-
beddings)

0.991 0.658

Table 3: Performance of Logistic Regression (LR) and Ran-
dom Forest (RF) on the training, validation, and test sets for
different feature sets.

From the performance seen in Table 3, we can see
that for the logistic regression classifier, the feature set
that gave the best validation score was Demographic +
1-grams, so we decided to go with that. For the random
forest classifier, the feature set that gave the best score
was just the demographic data.

4.2.2 Model Selection

We then needed to decide which classifier to use. The
performance results before and after tuning are displayed
below. (Note that for our final random forest classifier
test, we changed the number of trees to 1000, because
generally more trees give better performance [7].)

Accuracy Scores
Model Training Validation Test
LR (Not-tuned) 0.6420 0.6286 N/A
LR (tuned 0.6421 0.6292 0.6249
RF (Not-tuned) 0.9919 0.7028 N/A
RF (Tuned 0.9482 0.7080 0.7228

Table 4: Performance of models on the training, validation,
and test sets based on hyperparameter tuning.

Figure 1: Accuracy Plot of Classifiers for Model Selection.

The Tuned Random Forest Classifier performed the
best, with the highest validation accuracy of 70.80% and
final test accuracy of 72.28%. Note that tuning using
cross validation did improve the accuracy performance
of the models as expected, and that since the validation
and test scores are very similar, our models are unlikely
to be overfit.

4.2.3 Confusion Matrices

We generated confusion matrices for the tuned Logistic
Regression and Random Forest estimators performance
on the test set.
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Figure 2: Confusion Matrix for Tuned LR.

Figure 3: Confusion Matrix for Tuned RF.

4.2.4 Performance Metrics

The generated confusion matrices allow us to calculate
key performance metrics of the algorithms. We chose
these metrics to give us a better perspective of the suc-
cess of the algorithm and to ensure that the algorithm
was unbiased. The F1 score, which takes into account
the sensitivity and precision, also measures accuracy.

Performance Metrics
Model Precision Sensitivity Specificity F1-Score
Tuned LR 0.61 0.57 0.67 0.59
Tuned RF 0.73 0.66 0.78 0.70

Table 5: Performance Metrics of Classifiers.

Figure 4: Plot of Performance Metrics of Classifiers.

A visual representation of these trends is shown in
Figure 4. For both classifiers, the metrics are not too far
apart, which is a good sign that no one classifier is too
biased. However, each algorithm interestingly brings a
higher specificity than sensitivity. Since there is often a
trade-off between these two measurements, this makes
sense. Since the specificity is higher, this means that the
classifiers are more successful at correctly classifying a
justice’s vote on a case when they are voting for the de-
fendant. However, since the sensitivity is lower, the clas-
sifiers are not as successful at classifying a justice’s vote
on a case when they are voting for the plaintiff. This
effect may be more pronounced because in the dataset,
about 53% of the justice, case pairs had a vote for the de-
fendant, so there were slightly more examples like that.
Because of the difference in sensitivity and specificity,
our algorithms may be a little biased towards classifying
votes as for the defendant than they should be.

4.2.5 ROC Curve

Figure 5: ROC Curve for Tuned LR.
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Figure 6: ROC Curve for Tuned RF.

The ROC curves give us a better understanding of the
tradeoff between sensitivity and specificity. The area un-
der the curve (AUC) is another good performance met-
ric that lets us see how well the model can distinguish
between classes. Here, we see that the Tuned Random
Forest classifier had an AUC of 0.72 while the Logistic
Regression had an AUC of 0.62.

5 Discussion

5.1 Summary of Approach and Results

After obtaining and pre-processing our data, we then
created multiple feature sets to determine which would
be the most useful for our models. These feature sets
looked at the demographic data along with N-gram
counts and mean embedding representations of the con-
firmation text hearings. For each feature set, we used an
SVM with L1 regularization to find the most predictive
features to use for training. We found that for logistic re-
gression, the best feature set was the demographic data
along with 1-gram vector counts. The random forest
classifier performed best on just the demographic data.
Note that adding a TF-IDF transform did improve the re-
sults of the N-gram approach (as expected), but that the
mean embeddings performed better. This makes sense
because it takes into account the semantic relationships
between words while N-grams do not.

The success of our model on the demographic data
alone suggests a nominee’s confirmation hearing text may
not be very informative about their future voting behav-
ior when in combination with the nominee’s demograph-
ics. This would confirm the popular view that confirma-
tion hearings contain little substantive information from
the nominee.

We then tuned the hyperparameters for these clas-
sifiers on the feature sets they performed the best on.
The tuned random forest classifier on the demographic
feature set performed the best with a final test accuracy
of 72.28%, while the tuned logistic regression classifier

had an accuracy of 62.49%. As the validation and test
scores are very similar, we can be more sure that we
have not overfit the data and perhaps there is still room
for complexity in our models (like with a neural net-
work). Throughout model evaluation, we found that
random forest consistently outperformed logistic regres-
sion. This result is intuitively unsurprising as logistic
regression has linear decision boundaries, which is sim-
plistic. As such, we select the random forest classifier as
our model for predicting voting behavior.

As seen in Table 6, the performance of our best classi-
fier beat the baseline predictor which always guessed in
favor of the defendant. Moreover, it performed close to a
random forest classifier trained on past votes of Supreme
Court Justices, so this suggests that the demographic data
seems to be very predictive.

Accuracy Scores
Model Train Test
Baseline (Guess defendant) 0.531 0.531
Baseline (RF on Past Votes) 0.996 0.724
Tuned RF (Demographic) 0.9482 0.7228

Table 6: Comparison of best model with baseline models.

5.2 Hypotheticals

Because our model does not require a voting record to
model a justice, we are able predict the behavior of out-
of-sample nominees without a voting record on the Supreme
Court. This lets us answer the interesting hypothetical:
what what cases would have changed if failed nominees
had been successfully confirmed?

In the time period we looked at, we had data on three
failed nominees: Robert Bork, Harriet Miers, and Mer-
rick Garland. For each nominee we looked at all cases
decided by one vote and selected the cases where our
model predicted they would have swung the decision by
voting differently than the justice who eventually took
their seat. Out of the 514 cases with a one vote margin,
we predicted 128 where a different outcome would have
occurred if the failed nominee were on the bench.

Of those 128 flipped cases, three impactful examples
include Trump v. Hawaii, where the court failed to en-
join the Trump administration travel ban; Obergefell v.
Hodges, which declared bans on gay marriage unconsti-
tutional; and Citizens United v. FEC, which struck down
attempts to limit independent expenditures in political
campaigns.

It must be noted that these predictions are counter-
factual, therefore not empirically testable. Nor is the pre-
dictive accuracy of our model sufficiently high to treat
these predictions as dispositive. Still, the forward look-
ing nature of our model provides an empirical ground-
ing for discussing these hypotheticals – a grounding of-
ten lacking in the charged popular discourse.
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